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On a utilisé une petite lunette (objectif 74 mm., gross. 56 x).
Nuages par instants. La partie éclipsée de la lune était de couleur
rouge cuivré, verditre vers la limite de I'ombre,

3. Oecultations 4" Aldebaran par la Lune.

Dot Phén. T.. Gross. Remargues,
hm =2

1924 16 oetobre I 7 27 424" 1G0 Etoile se perd dane les
ondulations duo  bord
lanaire.

E 8 21 1941 6z Instantande.
1925 6 jenvier E i 4 co-h Gb Nuages.
1925 3 février I o 1 320 62 A travers dea nuages.

L'wil et oreille.

4. Occultation de la planéte Mars par la Lune le 5 novembre 1925,

On a pu enregistrer les contacts du bord avec le disque de Mars,
présentant une phase :

Fhém. TG, Bamargues,
hm =
II contact 1 8 4 131
mnr E 0T 24 Trop tard ; il faut retrancher & peu prés 48,
o, E g15719

(Grossissement utilisé, 190 x. Une légire couche de cirruz au
commencement. La luminosité du disque était un peu plus forte que
celle des parties les plus foncées de la Lune. Toutes ces ocoultations

ont été observées avec le réfracteur de 217 mm.
Nous pouvons ajouter les coordonnées de 1'Observatoire que voici:

A= ob gym 308 g 1'eat de Greenwich.
¢ =50 4 35"N.
altitude au dessus du niveau de mer étant 270 m.

Radiative Equilibrium in Inner Layers of Stars.
By V. A. Ambarzumian and N. A. Kosirev,

{Comvunicaled by the Secvefaries.)

§ 1. In this lmEer we try to prove that Neuman's series for the
resolvent of the kernel Ei |+ —¢[, which plays the essential part
in the question of radiative equilibrium, converges, the value of the
parameter being A = }; and that it represents an integrable function,
m every finite interval at least., Thus we obtain the solution of the

integral equation
fir) = B — i Bilr-t|BO& . .

* T.M.Gr
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where B(t) is the radiation of an absolutely black body at the tempera-

ture of the given layer, the optical mass therein being equal to ¢, fi) = ;']'

4mre the quantity of energy formed per unit massz, k the coefficient of
the absorption, in the form

Bir) = fin) + 4] Denfod . . . @)

where

T{r, ) = Bt [v—¢t |+ 87 )+ HBN7, 0%+ ... . (3)

T'(7, t) represents the resolvent, ™)z, {) — nth-iterated kernel obtained
from Hi [+ —¢ |, as all the iterated kernels are positive and therefore
(3) admita an integration term by term. The function D(r, {) is calou-
lated once for all and is independent of the form of fir). Consequently
the solution of the equation of radiative equilibrium (1) by means of
formula (z) has many advantages compared with other methods.

% 2. Let us denote

dnfr) = Y —7Bir) = 1—}| Bilr—t|d . (g
and introduce the function () by means of the recurrent relation
= 3 f Bi|r—¢|ghgmidt. . . (5}
We have already proved * that the series
Palr) Hdalr) + gl . D+ {6)

converges and even uniformly in all cases when 72=0, We may write
series (0) as followa :—

o) + 3 fﬂ CBi |7 — | (0t + 3] RO, e+
+ ziﬂju;mkh}{fs Py (B)dt + . . . (7)

Proceeding from the convergence of series (7) we shall prove the con-
vergence of the series

i | 7 — ¢ | hylt) + 26@r, Wy} +. . . + an_li:tﬂ} (m, Ol + . . . (8)

from which the convergence of (3) follows.

First of all we notice that series (8) is composed merely of positive
terms. First let us prove that + being constant, series (3) will be
convergent for all {>o except perhaps the points of a set of measure
zero (Lebesgue).  Let us denote

Bulr, 1) = Ei |7 — ¢ | folt) + 368, )y 6) + . . .
ok ) . . (9)

* M.N., 82, 213
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Bince the sequence B.(r, ) 12 & monotonically Inereasing one, it may
tend in every point either to a finite limit or to + 0. At any rate in
every point & certain finite or infinite limit does exist. Since all
S (7, f) in every fimite interval represent measurable functions (all
E®)(r, £) being measurable functions), the limit 8, (7, ) will also be a
measurable function according to a well-known theorem. Conse-
quently in every finite interval (a, §), (a=o, b=0) the set of points in
which this limit iz + o0 will have a certain measure, which we denote
by m. We have now to show that m = o. This is readily done if
we assume the contrary, according to the following theorem the proof
of which we omit for brevity. If the zequence of measurable functions
Ji fas + - . In a certain interval (, &) is increasing monotonically, and
if the set of points in which this sequence tends to + oo has the measure
m>0, no matter what the positive number M and 5 may be, it iz
possible to find a number N such that in all cases n=N the set of points,
in which f(v)=M, has the measure =>m — 7.

The sequence of functiona B (7, ) satisfies the conditions of this
theorem. Let us divide the set of points into two sets. In the firat get
B there are supposed to be all the points in which 8, (r, )= + oo, in the
second K all the remaiming points. If we examine the integrals in the
Lebesgue sense we get

[ Sutr 00 =[Syt 0+ [[Srnde .. (o
J B 5
By means of the above theorem we obtain

]ﬂ 8, (r, Odt = M{m — ) + L B0 . . (1)

Since M can be made as great as we please by increasing », it follows
from (11) that, with increase of n, L Salr, O)dt tends to infinity. Now

according to the notation for Bg(r, £) we have

J;Sﬂir, Odt = dao{t) +fulm) + . . L Fafdr) . (12)

But the expression (12) for any value of 7, as mentioned above, tends,
and tends even uniformliy, to a finite imit as # increases.  We have thus
come to & contradiction, Consequently m = o.

§ 3. From (3) and (9) we obtain

mﬂmha )= Tln oyl . . . (13)

Let us prove that in every finite interval I'(r, ) represents an integ-
rable function. First of all let us show that I'(r, &]Jl[t} in every finite
interval is an integrable function. In fact, we take any positive
number M and divide the set of points of our finite interval into two
sete in which D7, #),(t) is less than or equal to M{E) and greater than
M(E,). According to & well-known theorem we have for the first set

lim fmﬁﬂ{n 0t = L Pir, (Odt . . (14)

Fp—ge20
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Now let M increasze infinitely. If the integral II‘[T, Lafr ()de which
is extended over the whole interval does not exist, the right-hand
pide of (14) tends to infinity. Meanwhile for all walues of

M, lim f Bal, )t is finite. Consequently [T'(r, )iy (t)dt does exist,
fA=rw- I
gince we have come to a contradiction. Since if(f) is a continuous

fanction, and moreover a function which cannot be transformed into
zero, we may conclude that D, t) in every finite region o o < (< b
is integrable,

From the above we easily conclude that for every positive con-
tinuous function f{t) we have

f A, )f(e)de = f‘ i [T —t|f(tdt +} fﬁ:mm Ofidt + . . .
L1
From this we conclude that

L‘“r{f, Hfd = LWEi |7 — ¢ | flydt + } J;" FE(r, Of(0dt + . . . (15)

if the series of the right-hand side converges. The convergence of
this series depends on the form of the function f{f). For instance, this
geries converges for the Earhculmr case f(t) = yny(t). I series (15)
converges the golution (2) for the equation (1) will be true, as one can
eaaily see,

§ 4. Dr.Jeans in his very interesting paper * The Exact Equations of
Radiative Equilibrium ™ * obtains the expressions for the intensity of
transmitted energy I, for the density of energy B and for the radiative
pressure pg, by means of the following infinite differential operations

- + eos EE??(FHT_A) -+ (m:ﬁﬁ'-} cnaﬁﬂ— + cogt ﬂf—*—. : )

= P
(-3+25+. . (&) o
"'f'j,:;;"(ﬂ :JEE;‘E'?LaT!' ' ::'( ‘3+h=_3+ )(iizﬂf) (17)

B I 1 & 1 gt g &* 4re
3ek+(ﬁ:+ﬁﬁ+gfﬁi+- : -)(—H;@Jﬁ - )(T) (18)
By means of the relations we have obtained above we can give to these
formuls a more simple form.

First of all we obtain for I

4B d d

- s 2 I 195
I H+cmﬂd1_+41r(ma ﬂ+cnaﬂrﬁ7+m& HJTI_"')
(e + 4 1, opea) - (r9)

* M.N., BB, 574, 192h.
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Proceeding from the condition of radiative equilibrium

C
Bir) = f{r) + FTR{T] y ; . (20)
where ! is the velocity of light. By means of formula (z) we obtain
R(r) = o[ DG 0f@& . . . (@)
And finally we get for pg the following expression ;—
. ‘ETE ( I 1 d? I r.i’* )
Pr= g tiMgtom oot

(s +4 L I(r, 07@)t)  (22)

As for the flow of radiative energy through a unit of the surface we have
the following gimple expression :—

Hir) = —L}{sm+cl . w s 1B

where U, 1s a constant.

§ 5. From the formuls (19) and (22) there follows the correctness of
Jeans’ statement that the error in Eddm%an s formula a.tt-mn.b for I the
order f{r). A similar error (Eddington, Zeipel) occurs in the generally
assumed formula for the radiative pressure pg.

Pr = '&ET"' . . . . {I.ﬂ

where T is the temperature and a a constant. Thus any theorem based
on formula (24) and giving the expression f{r) is deprived of its basis,

Lendngrad
1927 May 15
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